
Laced Boolean functions and subset sum

problems in finite fields

David Canright1, Sugata Gangopadhyay2

Subhamoy Maitra3, Pantelimon Stănică1

1 Department of Applied Mathematics, Naval Postgraduate School
Monterey, CA 93943–5216, USA; {dcanright,pstanica}@nps.edu

2 Department of Mathematics, Indian Institute of Technology
Roorkee 247667 INDIA; gsugata@gmail.com

3 Applied Statistics Unit, Indian Statistical Institute
203 B. T. Road, Calcutta 700 108, INDIA; subho@isical.ac.in

March 13, 2011

Abstract

In this paper, we investigate some algebraic and combinatorial
properties of a special Boolean function on n variables, defined us-
ing weighted sums in the residue ring modulo the least prime p ≥ n.
We also give further evidence to a question raised by Shparlinski re-
garding this function, by computing accurately the Boolean sensitivity,
thus settling the question for prime number values p = n. Finally, we
propose a generalization of these functions, which we call laced func-
tions, and compute the weight of one such, for every value of n.

Mathematics Subject Classification: 06E30,11B65,11D45,11D72
Key Words: Boolean functions; Hamming weight; Subset sum problems; residues

modulo primes.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
13 MAR 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Laced Boolean functions and subset sum problems in finite fields

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Applied
Mathematics,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Discrete Applied Mathematics 159 (2011), 1059?1069.

14. ABSTRACT
In this paper, we investigate some algebraic and combinatorial properties of a special Boolean function on
n variables, de ned using weighted sums in the residue ring modulo the least prime p n. We also give
further evidence to a question raised by Shparlinski regarding this function, by computing accurately the
Boolean sensitivity thus settling the question for prime number values p = n. Finally, we propose a
generalization of these functions, which we call laced func- tions, and compute the weight of one such, for
every value of n.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

Being interested in read-once branching programs, Savicky and Zak [7] were
led to the definition and investigation, from a complexity point of view,
of a special Boolean function based on weighted sums in the residue ring
modulo a prime p. Later on, a modification of the same function was used
by Sauerhoff [6] to show that quantum read-once branching programs are
exponentially more powerful than classical read-once branching programs.
Shparlinski [8] used exponential sums methods to find bounds on the Fourier
coefficients, and he posed several open questions, which are the motivation
of this work.

Let n be a positive integer and p the smallest prime with p ≥ n. Let
Vn := Zn2 . Given a vector x = (x1, . . . , xn) ∈ Vn, we define wt(x) =

∑n
i=1 xi

to be the Hamming weight of x, and we let

s+(x) =
n∑
k=1

kxk (mod p), 1 ≤ s+(x) ≤ p, (1)

and define the x1–laced Boolean function (or simply, laced function) Ln,+ on
Vn by

Ln,+(x) =

{
xs+(x) if 1 ≤ s+(x) ≤ n;

x1 otherwise.
(2)

Note: this Ln,+ function is the function fn of [7] and f of [8].
We remark that we can alternatively define a function

s0(x) =
n∑
k=1

kxk (mod p), with 0 ≤ s0(x) ≤ p− 1. (3)

Let Ln,0 be the laced function corresponding to s0, namely

Ln,0(x) =

{
xs0(x) if 1 ≤ s0(x) ≤ n;

x1 otherwise.
(4)

It is immediate that if n 6= p then Ln,0 is the same as Ln,+.
Throughout this paper, we use the Landau symbols O and o with their

usual meanings. We denote by ei = (0, . . . , 1, 0, . . . , 0) the basis vector with
the only nonzero component in position i, in a vector space over the binary
field, of dimension that will be apparent from the context.

2 The weight of Ln,+

We recall that the weight, denoted by wt(f), of a Boolean function f is the
weight of its truth table, namely the number of 1’s in that binary string.

It is not very difficult to show that Lp,0 (p prime) does not depend on xp.
In fact, the following theorem holds.

2

Theorem 1. If p is prime, then

Lp,0(x1, . . . , xp) = Lp−1,+(x1, . . . , xp−1)

and so, wt(Lp,0) = 2wt(Lp−1,+). Furthermore, if n 6= 2, then

wt(Ln,0) = wt(Ln,+).

Proof. When n is prime, the function Ln,0 is degenerate and the first half
of the truth table is the same as the second half. That is because when n
is prime, then k xk (mod p) will always be zero when k = n, for either bit
value xk. The first half of the truth table will have xn = 0, and the second
half will have xn = 1. The output will be the same in both the cases. Only in
the case that p− 1 is also prime is the Lp−1,+ function needed on the right-
hand side, otherwise Lp−1,0 is equivalent. Since the weight of a function,
whose value does not depend on one of its variables, is twice the weight of
the function after removing this variable we have wt(Lp,0) = 2wt(Lp−1,+).

When n = p is prime then Ln,0 and Ln,+ may differ. In that case, when
Lp,+(x) = xp, then Lp,0(x) = x1. The argument for the first part of our
theorem implies that Lp,0(x) is independent of the value of xp. Moreover,

note that
∑p−1

k=1 k = p(p−1)
2 is divisible by p if p is odd. Consider those values

of x whose weighted sums are divisible by p, where Lp,+(x) and Lp,0(x) may
differ. For each such choice of the first p − 1 bits, the bitwise complement
of those p− 1 bits also gives a weighted sum divisible by p, and xp can take
either value. So these cases can be partitioned into groups of four, each group
having two with x1 = 1 and two with xp = 1. Hence wt(Lp,0) = wt(Lp,+).
Finally, it is easy to check that wt(L2,0) = 2 6= wt(L2,+) = 3.

Suppose D ⊆ Zp = {0, 1, . . . , p− 1} and b ∈ Zp. Define as in [3]

N(k, b,D) = #{{x1, . . . , xk} ⊆ D |x1 + x2 + · · ·+ xk ≡ b mod p}.

Let Z∗p = Zp \ {0}. From Theorem 1.2 in [3] we obtain

N(k, b,Z∗p) =
1

p

(
p− 1

k

)
+ (−1)k

v(b)

p

where v(b) = p − 1 if b = 0 and v(b) = −1 if b 6= 0. In this section we use
the results on the subset sum problem proved in [3] to put the computation
of the weight of Ln,0 in a recursive framework. First we prove the following
lemma.

Lemma 2. For any a, b ∈ Zp and a 6= 0,

N(k, b,Zp \ {0, a}) =
1

p

((
p− 2

k

)
+ (−1)k(wp− k − 1)

)
, (5)

where w = 1 if b/a ∈ {0, . . . , k} and w = 0 otherwise.

3

Proof. From the proof of Theorem 1.3 of [3, p. 920] we infer that

N(k, b,Zp \ {0, a}) =
1

p

(p− 2

k

)
− (−1)k

k∑
j=0

v(b− ka+ ja)R1
j

 ,

where R1
j = (−1)bj/pc+1 = −1 (if j < p). In the case under consideration

R1
j = −1 and b−ka+ja = 0 if and only if b/a = k−j where j ∈ {0, 1, . . . k}.

Therefore we obtain

N(k, b,Zp \ {0, a}) =
1

p

((
p− 2

k

)
+ (−1)k(wp− k − 1)

)
,

where w = 1 if b/a ∈ {0, . . . , k} and w = 0 otherwise.

Theorem 3. If p > 3 is a prime then

wt(Lp−1,0) = 2p−2 +
p− 1

2
.

Further, the algebraic degree of Lp−1,0 is deg(Lp−1,0) = p − 1, if p ≡ 3
(mod 4), and deg(Lp−1,0) ≤ p− 2, if p ≡ 1 (mod 4).

Proof. Suppose x = (x1,x
′) ∈ Vp−1 \ {0}. Then Lp−1,0(x) = 1 if and only

if any one of the following conditions is satisfied:

1. s0(x) = 0 and x1 = 1; that is, s0(0,x
′) = p − 1, using indices k ∈

Zp \ {0, 1}.

2. s0(x) = b ≥ 1 and xb = 1; that is, letting x̃ be x except x̃b = 0, then
s0(x̃) = 0, using indices k ∈ Zp \ {0, b}.

The weight of the function Lp−1,0 is

wt(Lp−1,0) =

p−2∑
k=1

N(k, p− 1,Zp \ {0, 1}) +

p−2∑
k=0

p−1∑
b=1

N(k, 0,Zp \ {0, b})

=

p−2∑
k=1

(
p−2
k

)
+ (−1)k+1(k + 1)

p

+

p−2∑
k=0

p−1∑
b=1

1

p

((
p− 2

k

)
+ (−1)k(p− k − 1)

)
= 2p−2 +

p− 1

2
.

(6)

The above follows from Lemma 2, binomial coefficients manipulation, using

the well known
N∑
s=0

(
N

s

)
= 2N and the fact that

k∑
l=0

(−1)l(k + 1 − l) =⌊
k + 2

2

⌋
.

We now deal with the last claim. Assume p ≡ 3 (mod 4). By McEliece’s
Theorem, the weight of a Boolean function of degree d must be divisible by

4

2b(n−1)/dc (see [4, p. 447]). If the degree d of Lp−1,0 were at most p−2, then
its weight would be divisible by 2b(p−2)/dc with b(p− 2)/dc ≥ 1. Since in our
case p ≡ 3 (mod 4), then 2 cannot divide (p− 1)/2, and so, 2 cannot divide
the weight of Lp−1,0, therefore the degree of Lp−1,0 must be p− 1. Further,
assume p ≡ 1 (mod 4). If deg(Lp−1,0) were p− 1, then it is immediate that
the weight of Lp−1,0 must be odd, which is not true under the condition
p ≡ 1 (mod 4). Thus, deg(Lp−1,0) ≤ p − 2. (We conjecture that, in fact,
deg(Lp−1,0) = p− 2, if p ≡ 1 (mod 4).)

In [3, p. 922] the following recursion was obtained, which will be used
by us quite often.

Lemma 4. We have

N(k, b,Zp\{a1, . . . , ac}) =
k∑
i=0

(−1)iN(k−i, b−iac,Zp\{a1, . . . , ac−1}). (7)

In principle, one can compute the weight of any of Ls,0 by using a descent
method, which we shall display next. Let x = (x1, x2, · · · , xn−1) and x′ =
(x2, x3, · · · , xn−1). It is easy to see that if n− 1 is not prime, then

Ln,0(x, xn) = x̄nLn,0(x, 0)⊕ xnLn,0(x, 1). (8)

Further, Ln,0(x, 0) = Ln−1,0(x) unless s0(x) = n and x1 = 1, therefore,
wt(Ln,0(x, 0)) = wt(Ln−1,0(x)) − #{x : s0(x) = n and x1 = 1}. Thus, if
one knows the weight of Ln,0 (for instance, since we now know the weight of
Lp−1,0 by Theorem 3, we can work our way down), to find the weight of any
function Ln−1,0, we need to find the weight of the second half of Ln,0, that
is, wt(Ln,0(·, 1)). The problem does not seem to be easy, in general, but we
shall display an example.

Let n = p− 1. From (8) we get

wt(Ln,0) = wt(Ln−1,0) + wt(Ln,0(·, 1))−
p−3∑
k=1

N(k, p− 2,Zp \ {0, 1, p− 1}).

First, using equation (5) and the well known binomial coefficients identity

k∑
i=0

(−1)i
(
r

i

)
= (−1)k

(
r − 1

k

)
. (9)

we obtain

N(k, p− 2,Zp \ {0, 1, p− 1}) =

k∑
i=0

(−1)iN(k − i, i− 2,Zp \ {0, 1})

=

k∑
i=0

(−1)i

p

(p− 2

k − i

)
+ (−1)k−i

k−i∑
j=0

v(2i+ j − k − 2)


=

1

p

(
p− 3

k

)
+

(−1)k

p

k∑
i=0

k−i∑
j=0

v(2i+ j − k − 2).

(10)

5

The computation of the double sum is straightforward, since v(·) is −1
except for one input, when it is p− 1, but that happens only if 2 ≤ i ≤ k+2

2 .
Ultimately, one obtains

p−3∑
k=1

N(k, p− 2,Zp \ {0, 1, p− 1}) =
2p−1 + p2 − 4p− 1

4p
,

and so, we get

wt(Ln,0) = wt(Ln−1,0) + wt(Ln,0(·, 1))− 2p−1 + p2 − 4p− 1

4p
(11)

We now concentrate on Ln,0(x, 1), where n = p − 1. By Theorem 3,
we know that the weight wt(Lp−1,0) = 2p−2 + p−1

2 . Since xn = 1 in this
case, we see that Ln,0(x, 1) = 1 if and only if one of the next (independent)
conditions is satisfied:

(i) s0(x) = 0; and so, s0(x, xn) = n. It follows that Ln,0(x, 1) = xn = 1.

(ii) s0(x) = 1 and x1 = 1; and so, s0(x, xn) = 0. Then Ln,0(x, 1) = x1 = 1.

(iii) s0(x) = b ≥ 2 and xb−1 = 1; and so, 1 ≤ s0(x, xn) = b − 1 ≤ p − 2.
Then Ln,0(x, 1) = xb−1 = 1.

We now count the number of solutions x in each of these cases. With the
previous notations, by (5) the number of solutions in case (i) is

n−1∑
k=0

N(k, 0,Zp \ {0, p− 1}) =

p−2∑
k=0

1

p

((
p− 2

k

)
+ (−1)k(p− k − 1)

)
=

2p−2 − 1

p
+
p+ 1

2p
=

2p−1 + p− 1

2p
.

(12)

It follows from (7) that the number of solutions in case (ii) is

p−3∑
k=0

N(k, 0,Zp \ {0, 1, p− 1})

=

p−3∑
k=0

k∑
i=0

(−1)iN(k − i, i,Zp \ {0, 1})

=

p−3∑
k=0

k∑
i=0

(−1)i
1

p

(p− 2

k − i

)
+ (−1)k−i

k−i∑
j=0

v(2i+ j − k)


=

2p−3

p
+
p2 − 1

4p
=

2p−1 + p2 − 1

4p
.

6

Similarly, the number of solutions in case (iii) is

p−1∑
b=2

p−3∑
k=1

N(k, 1,Zp \ {0, b− 1, p− 1})

=

p−1∑
b=2

p−3∑
k=1

k∑
i=0

(−1)iN(k − i, i+ 1,Zp \ {0, b− 1})

=

p−1∑
b=2

p−3∑
k=1

k∑
i=0

(−1)i
1

p

(p− 2

k − i

)
+ (−1)k−i

k−i∑
j=0

v(i+ 1 + (j − k + i)(b− 1))


=

p−1∑
b=2

p−3∑
k=1

1

p

((
p− 3

k

)
− (−1)k

2
(k2 + 3k + 2)

)
=

2p−1(p− 2)− 2p+ 2

4p
.

Adding these three counts and using (11), we obtain

2p−2 +
p− 1

2
− 2p−1 + p− 1

2p
− 2p−1 + p2 − 1

4p
− 2p−1(p− 2)− 2p+ 2

4p

+
p2 − 4p+ 2p−1 − 1

4p
= 2p−3 +

p− 3

2
,

which proves the next theorem.

Theorem 5. Assuming that p > 3 is prime and p − 2 composite, then the
weight of Lp−2,0 is

wt(Lp−2,0) = 2p−3 +
p− 3

2
.

For easy writing, if p is fixed, let A(t) :=
∑t

k=0(−1)k
(
k+p−1−t

k

)
. In

general, along the same path as before (without attempting to have accurate
bounds) one can prove the next result.

Theorem 6. Let n > 2 be an integer, p the least prime ≥ n and D =
Zp \ {0, n+ 1, . . . , p− 1}. The weights wn = wt(Ln,0), n ≤ p− 2, satisfy the
recurrence

wn − wn−1 =
n−1∑
k=0

N(k, 0,D \ {n}) +
n−2∑
k=0

N(k, 0,D \ {1, n})

+
n∑

b=2

n−2∑
k=1

N(k, 1,D \ {b− 1, n})−
n−2∑
k=1

N(k, n− 1,D \ {1, n})

≤ 1

p

(
(n+ 1)2n−2 + n

(
p− 1

n− 2

)
+

(
p− 1

n− 1

)
+−n− 1

p
+ 2

)
+

(
p

n− 1

)
− 1− 1

p2
(A(n− 1) + (p− 1)A(n− 2)) .

Proof. We will motivate only the inequality claim, as the recurrence can be
shown by an argument similar to the one of Theorem 5. We use Theorem
1.1 of [3] together with equation (8), to find upper bounds for each count.

7

First,

n−1∑
k=0

N(k, 0,D \ {n}) ≤
n−1∑
k=0

(
n−1
k

)
− (−1)k

p

(
k+p−n
p−n

)
+
(
k+p−n−1
p−n−1

)
p

=
1

p

(
2n−1 +

(
p− 1

n− 1

))
− 1

p2

n−1∑
k=0

(−1)k
(
k + p− n
p− n

)
=

1

p

(
2n−1 +

(
p− 1

n− 1

))
− 1

p2
A(n− 1).

Next,

n−1∑
k=0

N(k, 0,D \ {1, n}) ≤
n−2∑
k=0

(
n−2
k

)
− (−1)k

p

(
k+p−n+1
p−n+1

)
+
(
k+p−n
p−n

)
p

1

p

(
2n−2 +

(
p− 1

n− 2

))
− 1

p2

n−2∑
k=0

(−1)k
(
k + p− n+ 1

p− n+ 1

)
1

p

(
2n−2 +

(
p− 1

n− 2

))
− 1

p2
A(n− 2).

Third,

n∑
b=2

n−2∑
k=1

N(k, 1,D \ {b− 1, n}) ≤ (n− 1)

n−2∑
k=1

(
n−2
k

)
− (−1)k

p

(
k+p−n+1
p−n+1

)
+
(
k+p−n
p−n

)
p

=
n− 1

p

(
2n−2 +

(
p− 1

n− 2

)
− 1

)
− n− 1

p2

n−2∑
k=1

(−1)k
(
k + p− n+ 1

p− n+ 1

)
=
n− 1

p

(
2n−2 +

(
p− 1

n− 2

)
− 1

)
− n− 1

p2
(A(n− 2)− 1) .

Finally,

n−2∑
k=1

N(k, n− 1,D \ {1, n})

≥
n−2∑
k=1

(
1

p

(
n− 2

k

)
− (−1)k

p

(
k + p− n+ 1

p− n+ 1

)
−
(
k + p− n
p− n

))

=
1

p

(
2n−2 + p− 1

)
−
(

p

n− 1

)
− 1

p

n−2∑
k=1

(−1)k
(
k + p− n+ 1

p− n+ 1

)
.

Putting all these bounds together, we obtain that wn − wn−1 is

≤ 1

p

(
(n+ 1)2n−2 + n

(
p− 1

n− 2

)
+

(
p− 1

n− 1

)
+−n− 1

p
+ 2

)
+

(
p

n− 1

)
− 1− 1

p2
(A(n− 1) + (p− 1)A(n− 2)) .

One can use a computer algebra system to replace A(t) by a hypergeo-
metric expression, but we preferred not to do that, since it is simple enough
(as one reviewer suggested). Taking n = p− 2 in the previous theorem and
using the result of Theorem 5, we obtain the following corollary.

8

Corollary 7. We have for prime p > 3 where p− 2 is composite

wt(Lp−3,0) ≥
p− 1

p
· 2p−4 − 4p5 − 34p4 + 117p3 − 215p2 + 227p− 3

24p
.

3 A generalization

We introduce a generalized version of the x1–laced Boolean function, say
φ–laced function, where φ is an arbitrary, but fixed Boolean function on Vn,
which we define by

Lφn(x) =

{
xs(x) if 1 ≤ s(x) ≤ n;

φ(x) otherwise,

where s is either s0, or s+. It could be interesting to investigate the proper-
ties of this generalized laced function, similar to the ones contained in [8], or
in this paper. Below we consider one such function obtained by modifying
the x1–laced Boolean function, and compute its weight for any value of n.

3.1 A modification of the x1–laced Boolean function

Let the Boolean function Ln be defined as follows.

Ln(x) =

{
xs+(x) if s+(x) ∈ [1, n];

xs+(x)−n if s+(x) ∈ [n+ 1, p].
(13)

(Note that when n = p or n = p− 1, this Ln is the same as Ln,+, which was
studied earlier.) Recall the definition of Gauss’ hypergeometric function [1,
P.1]

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)kz
k

(c)kk!
,

where (x)k = x(x + 1) · · · (x + k − 1) is the Pochhammer symbol. We will
be using the hypergeometric function 2F1 to write in a compact way an
alternating sum of binomial coefficients. In the following theorem we obtain
the weight of the function Ln, for every value of n. Let wb,k = 1, if (the
least residue of) n(b − n)−1 (mod p) is i ≤ k, otherwise, wb,k = 0. Define
εn :=

∑p
b=n+1

∑n−1
k=1(−1)kwb,k.

Theorem 8. If n > 2 is a positive integer and p is the smallest prime
number greater than or equal to n with p 6= n then the weight of the function
Ln is

wt(Ln) = 2p−2 +
n− p
p
−
(
p− 2

n

)
2F1(1, n− p+ 2, n+ 1,−1) + εn

+
(2(−1)nn+ (1− (−1)n) (2p− 1)) + (3 + (2n+ 1)(−1)n) (p− n)

4p
.

9

Proof. Suppose s+(x) = b. Ln(x) = 1 in the following two cases.
Case 1: b ∈ [1, n], xb = 1. In this case

∑n
k=1 kxk = b mod p, that is∑n

k=1,k 6=b kxk = 0 mod p. The number of such points is equal to

n∑
b=1

n−1∑
k=0

N(k, 0,Z \ {0, b}).

Case 2: b ∈ [n + 1, p], xb−n = 1. In this case
∑n

k=1,k 6=n−b kxk + b − n =
b mod p, that is

∑n
k=1,k 6=n−b kxk = n mod p. The number of such points is

equal to
p∑

b=n+1

n−1∑
k=1

N(k, n,Z \ {0, b− n}).

Thus the total number of points at which the function Ln is equal to 1 is

wt(Ln) =
n∑
b=1

n−1∑
k=0

N(k, 0,Z \ {0, b}) +

p∑
b=n+1

n−1∑
k=1

N(k, n,Z \ {0, b− n}).

Recall that N(k, b,Zp \{0, a}) = 1
p

((
p−2
k

)
− (−1)k

∑k
j=0 v(b− ka+ ja)R1

j

)
,

where v(b) = p− 1 if b = 0 and v(b) = −1 if b 6= 0. R1
j = (−1)

b j
p
c+1

= −1 if
j < p. Thus

N(k, 0,Zp \ {0, b}) =
1

p

(p− 2

k

)
+ (−1)k

k∑
j=0

v(b(j − k))


=

1

p

((
p− 2

k

)
+ (−1)k(p− k − 1)

)
,

(14)

since b < p and so v(b(j − k)) = v(j − k). Further,

N(k, n,Zp \ {0, b− n}) =
1

p

(p− 2

k

)
+ (−1)k

k∑
j=0

v(n− (b− n)(k − j))


=

1

p

((
p− 2

k

)
+ (−1)k

k∑
i=0

v(n− (b− n)i)

)

=
1

p

((
p− 2

k

)
+ (−1)k(pwb,k − k − 1)

)
,

(15)

where wb,k = 1, if (the least residue of) n(b − n)−1 (mod p) is i ≤ k (and
so, v(n− (b− n)i) = p− 1, in that case), otherwise, wb,k = 0. Now, we use
(14) and (15), together with Mathematica1 , to compute the weight of the

1A Trademark of Wolfram Research

10

function Ln as

wt(Ln) =
n∑

b=1

n−1∑
k=0

N(k, 0,Z \ {0, b}) +

p∑
b=n+1

n−1∑
k=1

N(k, n,Z \ {0, b− n})

=
1

p

n∑
b=1

n−1∑
k=0

((
p− 2

k

)
+ (−1)k(p− k − 1)

)

+
1

p

p∑
b=n+1

n−1∑
k=1

((
p− 2

k

)
+ (−1)k(pwb,k − k − 1)

)

=
1

p

p∑
b=1

n−1∑
k=0

(
p− 2

k

)
+
n− p
p

+
1

p

n∑
b=1

n−1∑
k=0

(−1)k(p− k − 1)

+
1

p

p∑
b=n+1

n−1∑
k=1

(−1)k(pwb,k − k − 1)

= 2p−2 +
n− p
p
−
(
p− 2

n

)
2F1(1, n− p+ 2, n+ 1,−1) + εn

+
1

4p
(2(−1)nn+ (1− (−1)n) (2p− 1)) +

1

4p
(3 + (2n+ 1)(−1)n) (p− n).

(Observe that the hypergeometric function 2F1(a, b; c; z) is convergent for
a = 1, b = n−p+2, n+1, z = −1, since Re(c−a−b) = (n+1)−1−(n−p+2) =
p− 2 > 0, cf. [1, P.1].)

4 The average sensitivity of some laced functions

In [2], Cook et al. introduced the notion of sensitivity as a combinato-
rial complexity measure for Boolean functions providing lower bounds on
the time needed by a CREW PRAM (concurrent read, but exclusive write
(CREW) parallel random access machine (PRAM)). It was extended by
Nisan [5] to block sensitivity. It is still open whether sensitivity and block
sensitivity are polynomially related (they are equal for monotone Boolean
functions). Here, we will define and work with the notion of sensitivity,
only. Although the definition is straightforward, the sensitivity is under-
stood only for a few classes of function. In this section we add one more
class (Theorem 10) of Boolean functions for which the sensitivity is known.

Let ρ = 1 − 2
π ln 2

∑∞
k=0

(−1)k
(2k+1)2

≈ 0.1587 . . ., and let H be the entropy

function H(x) = −x log x − (1 − x) log(1 − x), 0 < x < 1. We define the
average sensitivity of a Boolean function g on n variables by

σav(g) = 2−n
∑
x∈Vn

n∑
i=1

|g(x)− g(x⊕ ei)|, (16)

where ei = (0, . . . , 0, 1, 0, . . .) (with 1 on the ith position). Shparlinski
showed in [8] that σav(f) ≥ (τ + o(1))n, where τ = 0.0575 . . . is the root of
the equation H(τ) = 2ρ, and he asked the following question.

11

Open Question 9 ([8, p. 86]). Is it true that the function Ln,+ satisfies

σav(Ln,+) ≥
(

1

2
+ o(1)

)
n ?

Below, we give further evidence to this open question (recall that for
n prime, Ln = Ln,+, and so, we get the same result for Ln for free). We
would like to point out that the error term in our computation is explicit
and always negative, for prime p sufficiently large (more precisely, p ≥ 11).

Theorem 10. We have for odd prime p

σav(Lp,+) =
(p2 − p+ 2)2p−2 + (p− 1)3 + (p2 − p)(−1)

p−1
2

p 2p−1

=

[
1

2

(
1− 1

p
+

2

p2

)
+O

(p

2p−1

)]
p.

Consequently, σav(Lp,+) < p
2 , for sufficiently large prime p.

Proof. To find σav(Lp,+) we count the ways that changing a single bit in x
to get x̃ results in a change in the function from Lp,+(x) = 1 to Lp,+(x̃) = 0;
this total gives 2p−1 σav(Lp,+). (The power is 2p−1, not 2p, because we only
count the changes of Lp,+ from 1 to 0 and not the reverse cases from 0 to 1.)

Let a = s+(x), b be the index of the bit xb we flip to x̃b, and c = s+(x̃).
Then the output of Lp,+ will change from xa = 1 to x̃c = 0 in the five
distinct cases below. In the last case, xb = 0 changes to x̃b = 1. For the first
four cases, xb = 1 changes to x̃b = 0, so c = a− b (mod p), and we exhaust
all cases of equality between a, b, and c; note that we cannot have a = c 6= b
because then x̃c = xa = 1.

(i) a = b = c = p (since c = a− b (mod p)) so x̃c = x̃b = 0.

(ii) xb = 1 and a 6= b = c (i.e. a = 2b (mod p) but b 6= p), so a 6= p and
x̃c = x̃b = 0.

(iii) a = b 6= c = p (since c = a− b (mod p)) and xp = 0, so x̃c = xp = 0.

(iv) xb = 1 and xc = 0 and a, b, and c are distinct (where c = a − b
(mod p)), so a 6= 2b (mod p) (since b 6= c) and b 6= p (since a 6= c) and
c 6= p (since a 6= b), then x̃c = xc = 0.

(v) xb = 0 and xc = 0, where c = a+ b (mod p), so a 6= b (since xa = 1 6=
xb = 0), b 6= c and a 6= p (since x̃b = 1 6= x̃c = 0), a 6= c and b 6= p
(since xa = 1 6= xc = 0), so again a, b, and c are distinct.

We now count the number of solutions a, b, c in each of these cases. We will
extensively use Lemma 4 along with equation (9) and the definition of the
function v(·).

12

With the previous notations, the number of solutions in case (i) is

S1 =

p−1∑
k=0

N(k, 0,Zp \ {0})

=

p−1∑
k=0

1

p

((
p− 1

k

)
+ (−1)k(p− 1)

)
=

2p−1 + p− 1

p
.

(17)

For case (ii), the number of solutions for the choice b = 1 (so a = 2) is

S2 =

p−3∑
k=1

N(k,−1,Zp \ {1, 2}) =

p−3∑
k=1

k∑
i=0

(−1)iN(k − i,−2i− 1,Zp \ {1})

=

p−3∑
k=1

k∑
i=0

(−1)i

p

((
p− 1

k − i

)
+ (−1)k−iv(−k − i− 1)

)

=
2p−2 − 1

p
+

(−1)(p−1)/2 + 1

2p
=

2p−1 − 1

2p
+

(−1)
p−1
2

2
.

Then, since b could take any value in Z∗p (with a changing accordingly from
2 above to 2b (mod p)), the total for case (ii) is (p− 1)× this sum.

The number of solutions in case (iii), for the choice b = 1, is (as in (6))

S3 =

p−3∑
k=0

N(k, 0,Zp \ {0, 1}) =

p−2∑
k=0

1

p

((
p− 2

k

)
+ (−1)k(p− k − 1)

)
=

2p−1 + p− 1

2p
.

Again, b could take any value in Z∗p, so the total for case (iii) is (p − 1)×
this sum.

For case (iv), with the choice b = p − 1 (so c = a − b = a + 1 and
a 6= 2b = p− 2), by Lemma 4, the number of solutions is

S4 =

p−3∑
a=0

p−3∑
k=1

N(k, 1,Zp \ {a, a+ 1, p− 1})

=

p−3∑
a=0

p−3∑
k=1

k∑
i=0

(−1)iN(k − i, i+ 1,Zp \ {a, a+ 1})

=

p−3∑
a=0

p−3∑
k=1

k∑
i=0

k−i∑
j=0

(−1)i+jN(k − i− j, i+ 1− j(a+ 1),Zp \ {a})

=

p−3∑
a=0

p−3∑
k=1

k∑
i=0

k−i∑
j=0

(−1)i+jN(k − i− j, i+ 1− j(a+ 1)− (k − i− j)a,Z∗
p)

=

p−3∑
a=0

p−3∑
k=1

k∑
i=0

k−i∑
j=0

(−1)i+j

((
p−1

k−i−j

)
+ (−1)k−i−jv(i+ 1− j + (i− k)a)

)
p

=
(2p−3 − 1)(p− 2)

p
+
p− 3

2p
=

2p−3(p− 2)

p
− p− 1

2p
,

13

using the fact that, for a 6= 0, N(k, b,Zp \ {a}) = N(k, b − ka,Zp \ {0}).
Again, the total is (p− 1)× this sum, since any given choice of (a, a+ 1,−1)
above can be multiplied by any b ∈ Z∗p.

Lastly, for case (v), again with the choice b = p− 1 (so c = a+ b = a− 1
and a 6= b, p), the number of solutions is

S5 =

p−3∑
c=0

p−3∑
k=1

N(k, 0,Zp \ {c, c+ 1, p− 1})

=

p−3∑
c=0

p−3∑
k=1

k∑
i=0

k−i∑
j=0

(−1)i+jN(k − i− j, i− j(c+ 1),Zp \ {c})

=

p−3∑
c=0

p−3∑
k=1

k∑
i=0

k−i∑
j=0

(−1)i+jN(k − i− j, i− j(c+ 1)− (k − i− j)c,Z∗
p)

=

p−3∑
c=0

p−3∑
k=1

k∑
i=0

k−i∑
j=0

(−1)i+j 1

p

((
p− 1

k − i− j

)
+ (−1)k−i−jv(i− j + (i− k)c)

)

=
2p−3(p− 2)

p
+ p− 2 +

1

2p
+

(−1)
p−1
2

2
.

And again, the total is (p− 1)× this sum.
Adding the counts for cases (ii)-(v) (each for a single choice of b) then

gives

S2 + S3 + S4 + S5 = 2p−2 + p− 2 + (−1)
p−1
2

So we conclude that

σav(Lp,+) =
S1 + (p− 1)× [S2 + S3 + S4 + S5]

2p−1

=
(p2 − p+ 2)2p−2 + (p− 1)3 + (p2 − p)(−1)

p−1
2

p 2p−1

=

[
1

2

(
1− 1

p
+

2

p2

)
+O

(p

2p−1

)]
p.

Therefore, σav(Lp,+)/p < 1
2 for p sufficiently large.

We wrote a computer program to directly calculate the sensitivity per bit
σav(Ln,+)/n for values 2 ≤ n ≤ 32, and similarly for Ln,0 and Ln. Figure 1
shows our findings (values at integers n are connected by lines for visual
clarity); these results are also listed in the Appendix. Note: for n 6= p, then
Ln,0 = Ln,+; for n = p or n = p− 1, then Ln = Ln,+.

The analysis for the sensitivity of Ln+ may be done for other values of
n, as the reader can suspect, however, the general case does not seem too
simple since the bounds for the N counts used in our analysis are not strong
enough to give the tight bounds for the sensitivity.

Certainly, other cryptographic properties can be investigated. We wrote
a program which computes the (Hamming) nonlinearity (that is, the mini-
mum Hamming distance to the set of all affine functions [9]) of the x1–laced
functions and we report here some preliminary observations. We found that

14

2 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

Figure 1: Sensitivity per bit of Ln,+ (solid), Ln,0 (dotted), Ln (dashed), for
n ≤ 32

for n ≥ 10, x1 seems to be the closest function whose corresponding dis-
tance gives the nonlinearity (this is natural as in many cases we force Ln to
equal x1). If that were to be proved, then the nonlinearity can certainly be
computed since we know that the truth table of the function x1 is simply
the concatenation of the pattern 01, 2n−1 number of times. That can be
accomplished by a method not too different than the one contained in this
paper. Moreover, we observed that the nonlinearity seems to increase as the
distance between n and the next prime increases.

Acknowledgement

We gratefully thank the reviewers for the detailed and excellent comments,
which improved the quality of the paper.

References

[1] George Gasper and Mizan Rahman, Basic Hypergeometric Series, 2nd
Edition, (2004), Encyclopedia of Mathematics and Its Applications, 96,
Cambridge University Press, Cambridge.

[2] S.A. Cook, C. Dwork, and R. Reischuk, “Upper and lower time bounds
for parallel random access machines without simultaneous writes”,
SIAM J. Comp. 15 (1986), 87–97.

[3] J. Li, D. Wan, “On the subset sum problem over finite fields”, Finite
Fields & Applic. 14 (2008), 911–929.

[4] F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes,
North-Holland, Amsterdam, New York, Oxford, 1977.

[5] N. Nisan,“CREW PRAMs and decision trees”, SIAM J. Comput. 20
(1991), no. 6, 999–1070.

15

[6] M. Sauerhoff, “Quantum vs. classical read-once branching programs”,
preprint 2005, 1–35; see http://arxiv.org/abs/quantph/0504198.

[7] P. Savický, S. Žák, “A read-once lower bound and a (1,+k)-hierarchy
for branching programs”, Theoret. Comput. Sci. 238 (2000), 347–362.

[8] I. Shparlinski, “Bounds on the Fourier coefficients of the weighted sum
function”, Inform. Process. Lett. 103 (2007), 83–87.

[9] Y. Zheng, X.-M. Zhang, H. Imai, “Restriction, terms and nonlinearity
of Boolean functions”, Theoret. Comput. Sci. 226 (1999), 207–223.

16

Appendix

Table 1: Sensitivity of the Laced Boolean Functions.
Note: for n 6= p, then Ln,0 = Ln,+; for n = p or n = p− 1, then Ln = Ln,+.

Laced Function
n p Ln,0 Ln,+ Ln

1 2 =⇒ 1.000000 ⇐=
2 2 0.500000 0.500000 ⇐=
3 3 0.333333 0.500000 ⇐=
4 5 =⇒ 0.750000 ⇐=
5 5 0.600000 0.650000 ⇐=
6 7 =⇒ 0.562500 ⇐=
7 7 0.482143 0.504464 ⇐=
8 11 =⇒ 0.542969 0.515625
9 11 =⇒ 0.537326 0.507378

10 11 =⇒ 0.507812 ⇐=
11 11 0.461648 0.469993 ⇐=
12 13 =⇒ 0.502930 ⇐=
13 13 0.464243 0.470177 ⇐=
14 17 =⇒ 0.499721 0.492868
15 17 =⇒ 0.501274 0.496570
16 17 =⇒ 0.500244 ⇐=
17 17 0.470818 0.474279 ⇐=
18 19 =⇒ 0.500061 ⇐=
19 19 0.473742 0.476512 ⇐=
20 23 =⇒ 0.498964 0.495687
21 23 =⇒ 0.500033 0.497941
22 23 =⇒ 0.500005 ⇐=
23 23 0.478265 0.480156 ⇐=
24 29 =⇒ 0.495695 0.494256
25 29 =⇒ 0.497934 0.495863
26 29 =⇒ 0.499338 0.497348
27 29 =⇒ 0.500001 0.498723
28 29 =⇒ 0.500000 ⇐=
29 29 0.482759 0.483948 ⇐=
30 31 =⇒ 0.500000 ⇐=
31 31 0.483871 0.484912 ⇐=
32 37 =⇒ 0.497466 0.496622

17

